Towards prediction and prioritization of disease genes by the modularity of human phenome-genome assembled network

نویسندگان

  • Jeffrey Q. Jiang
  • Andreas W. M. Dress
  • Ming Chen
چکیده

Empirical clinical studies on the human interactome and phenome not only illustrates prevalent phenotypic overlap and genetic overlap between diseases, but also reveals a modular organization of the genetic landscape of human disease, providing new opportunities to reduce the complexity in dissecting the phenotype-genotype association. We here introduce a network-module based method towards phenotype-genotype association inference and disease gene identification. This approach incorporates protein-protein interaction network, phenotype similarity network and known phenotype-genotype associations into an assembled network. We then decomposes the resulted network into modules (or communities) wherein we identified and prioritized the disease genes from the candidates within the loci associated with the query disease using a linear regression model and concordance score. For the known phenotype-gene associations in the OMIM database, we used the leave-one-out validation to evaluate the feasibility of our method, and successfully ranked known disease genes at top 1 in 887 out of 1807 cases. Moreover, applying this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retraction: Towards Prediction and Prioritization of disease genes by the modularity of human phenome-genome assembled network

by the modularity of human phenome-genome assembled network Jeffrey Q Jiang, Andreas W M Dress and Ming Chen Journal of Integrative Bioinformatics, 7(2):149, 2010. A. Dress and M. Chen have requested that this article be withdrawn because it contains material already published elsewhere and apologize that the first author inappropriately used figures and tables in other papers (FEBS Lett. 582(1...

متن کامل

Inferring Gene-Phenotype Associations via Global Protein Complex Network Propagation

BACKGROUND Phenotypically similar diseases have been found to be caused by functionally related genes, suggesting a modular organization of the genetic landscape of human diseases that mirrors the modularity observed in biological interaction networks. Protein complexes, as molecular machines that integrate multiple gene products to perform biological functions, express the underlying modular o...

متن کامل

Genome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity

The current outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)in China threatened humankind worldwide. The coronaviruses contains the largest RNA genome among all other known RNA viruses, therefore the disease etiology can be understood by analyzing the genome sequence of SARS-CoV-2. In this study, we used an ab-intio based computational tool VMir to scan the complete geno...

متن کامل

Computational prediction of miRNAs in Nipah virus genome reveals possible interaction with human genes involved in encephalitis

Current re-emergence of Nipah virus (NiV) in India caused 11 deaths so far and many patients were kept in quarantine. A thorough study of previous outbreaks occurred in Malaysia, Bangladesh and India represents cases with high rate of fatality due to acute encephalitis. Our work involves genome analysis of NiV for prediction of miRNAs and their targeted genes in human in order to understand enc...

متن کامل

Network-based Phenome-Genome Association Prediction by Bi-Random Walk

MOTIVATION The availability of ontologies and systematic documentations of phenotypes and their genetic associations has enabled large-scale network-based global analyses of the association between the complete collection of phenotypes (phenome) and genes. To provide a fundamental understanding of how the network information is relevant to phenotype-gene associations, we analyze the circular bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of integrative bioinformatics

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 2010